Measurements of $^{13}\text{C} + ^{12}\text{C}$ and $^4\text{He} + ^{64}\text{Zn}$ fusion cross section at deep sub-barrier energies in IFIN-HH

D. Tudor

Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Bucharest, Romania

12.09.2018 - 14.09.2018 @ Atomki, Debrecen
Nuclear physics in stellar explosions Workshop '18
Outline

➢ Introduction

➢ Motivation

➢ $^{12}C(^{13}C, p)^{24}Na, and ^{64}Zn(\alpha, p)^{64}Ga$ reactions

➢ Results

➢ Conclusions
Introduction

The origin of chemical elements in the Universe:
➢ Big Bang Nucleosynthesis
➢ Stellar Nucleosynthesis

Nuclear Physics for Astrophysics (NPA) - to determine reaction rates in the stars

\[
\langle \sigma v \rangle = \left(\frac{8}{\pi \mu} \right)^{1/2} \left(\frac{1}{(kT)^{3/2}} \right) S(E_0) \int_0^\infty e^{-\frac{E}{kT} - \frac{b}{E^{1/2}}} dE
\]

\(E_0 \) is the Gamow energy

\(E_0 = \left(\frac{bkT}{2} \right)^{2/3} = 1.22(Z_1^2Z_2^2\mu T_6^2)^{1/3} \text{ keV} \)

\(\Delta \) is the energy window width

\[
\Delta = \frac{4}{3^{1/2}} (E_0 kT)^{1/2} = 0.749(Z_1^2Z_2^2\mu T_6^5)^{1/6} \text{ keV}
\]

Figure 1. Gamow peak, the region where reactions relevant for nuclear astrophysics occur. Claus E. Rolfs and William S. Rodney [1].
Motivation

Possibility for direct nuclear astrophysics measurements induced by light ions at IFIN-HH, with:
- high currents
- 3 MV Tandetron accelerator!
- stability of beam energies
- appropriate energy range

Main problems in direct measurements are:
- low reaction cross sections
- high radiation background

Despite this, we benefit of an Ultra low background at µBq laboratory placed in Unirea salt mine!

- Low background laboratory: GammaSpec
- NAG (Nuclear Astrophysics Group) laboratory in IFIN-HH
The $^{13}\text{C} + ^{12}\text{C}$ Experiment

- **Important reaction in nuclear astrophysics:** $^{12}\text{C} + ^{12}\text{C}$ (carbon burning scenario)

- Very difficult to measure, cross section fluctuating due to resonances!

No resonances observed in $^{13}\text{C} + ^{12}\text{C}$!

Obs: for most energies, the $^{12}\text{C} + ^{12}\text{C}$ cross sections are suppressed!

- Only at resonant energies, the $^{12}\text{C} + ^{12}\text{C}$ cross sections match with those of $^{12}\text{C} + ^{13}\text{C}$ and $^{13}\text{C} + ^{13}\text{C}$!

- Proposed tests using $^{13}\text{C} + ^{12}\text{C}$, measured in the Gamow window.

Therefore, the study of $^{13}\text{C} + ^{12}\text{C}$ in the Gamow energy region would be useful to understand the reaction dynamics at such low energies

Figure 2. Modified astrophysical S factor

NPSE Workshop Atomki, Debrecen
The 13C+12C Experiment

- 13C beam energy 11 – 4.6 MeV ($E_{cm}=5.3 – 2.2$ MeV), in steps of 0.2 MeV

<table>
<thead>
<tr>
<th>Canalul de iese</th>
<th>E_{γ} [keV]</th>
<th>ϵ_{γ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>21Ne + α</td>
<td>350.7</td>
<td>0.182%</td>
</tr>
<tr>
<td>23Na + $p\alpha$</td>
<td>439.9</td>
<td>0.199%</td>
</tr>
<tr>
<td>24Na + p</td>
<td>472.2</td>
<td>0.205%</td>
</tr>
<tr>
<td>24Mg + n</td>
<td>1368.63</td>
<td>0.287%</td>
</tr>
</tbody>
</table>

12C (13C, p) 24Na

NPSE Workshop Atomki, Debrecen
µBq laboratory

NPSE Workshop Atomki, Debrecen
Cross section determination

The cross sections were determined starting from the experimental yields:

\[
Y(E) = \int_{0}^{E} \sigma(E) \frac{dx}{dE} \frac{N_A}{A_t} dE
\]

\[
\Lambda = \frac{N_{ydet}}{\epsilon_y I_y} \frac{\lambda e^{-\lambda \Delta t}}{(1 - e^{-\lambda t_{max}})}
\]

\[
Y(E) = \frac{\Lambda}{I_{t*\Delta t}}
\]

\[
I = \sum_{t_0}^{t_f} I(t) e^{-\lambda (t_f - t)} \Delta t
\]

Last step was the determination of experimental cross section:

\[
\sigma(\tilde{E}) = \frac{Y(E + \Delta E) - Y(E)}{n_t} \cdot 10^{24} b
\]

NPSE Workshop Atomki, Debrecen
Cross section determination

\[\sigma (13C, p)^{24}Na \]

NPSE Workshop Atomki, Debrecen
The $^{64}\text{Zn}(\alpha,p)^{67}\text{Ga}$ reaction

- Natural zinc targets
- E_{lab} between 5.4 – 8 MeV in steps of 0.2 and 0.25 MeV
- Beam current: 0.5 – 0.65 µA

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Product isotope</th>
<th>Half-life</th>
<th>E_γ [keV]</th>
<th>Relative Intensity [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{64}\text{Zn}(\alpha,p)$</td>
<td>^{67}Ga</td>
<td>3.26 d</td>
<td>184.6</td>
<td>21.41 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>209.0</td>
<td>2.46 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300.2</td>
<td>16.64 ± 0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>393.5</td>
<td>4.56 ± 0.24</td>
</tr>
</tbody>
</table>
Activation measurements. Preliminary results

\[S(E) = \sigma(E) \ast E \ast \exp(2\mu\eta) \]

The astrophysical S(E) factor of experimental data obtained from \(^{64}\text{Zn} \, (\alpha, \text{p}) \, ^{67}\text{Ga}\), \(^{64}\text{Zn} \, (\alpha, \text{n}) \, ^{67}\text{Ge}\), \(^{64}\text{Zn} \, (\alpha, \gamma) \, ^{68}\text{Ge}\) reaction channels in comparison with theoretical results [9, 10].
Conclusions

- We studied the 12C(13C,p)24Na and 64Zn(α,p)67Ga fusion reactions in the energy range $E=4.6-11$ MeV and $E=5.4-8$ MeV respectively.

- Measurements in different setups: NAG, GammaSpec and μBq are consistent.

- Activities of the irradiated targets measured both in the underground and surface laboratory allowed to determine the lowest cross sections of the order of 100 pb for 12C(13C,p)24Na and 30 nb for 64Zn(α,p)67Ga.

- We extended the range of measurements down into the Gamow windows, with the important conclusion that the Hindrance model does not work for 13C+12C.
Many thanks to:

and

N.T. Zhang, X. Tang, H. Chen (IMP - Lanzhou, China)

Acknowledgements

- PNIII Grant NUCASTRO2
- The ChETEC Cost Action (CA16117) for support at this meeting.
References

Thank you!