Nuclear Astrophysics research at IFIN-HH

Livius Trache
IFIN-HH, Bucharest-Magurele

Nuclear physics in stellar explosions Workshop ‘18
ATOMKI/Debrecen, Sept 12-14, 2018
Advances in nuclear astrophysics with direct and indirect methods at IFIN-HH

Results of doing nuclear astrophysics research in IFIN-HH Bucharest-Magurele in the last 3-4 years. There is progress on the two basic types of experimental activities:

• Direct measurements at low and very low energies with beams from the local 3 MV tandemron accelerator. Competitive for measurements into the Gamow window of reactions induced by light ions and alphas. Extra sensitivity is provided by the ultra-low background laboratory in a salt mine about 120 km away.

• Indirect measurements at international facilities with radioactive beams: TAMU, RIKEN

With help from IFIN-HH colleagues, I will mention some theory advances, too.

Complementary to earlier talks by Alexandra C. and Dana T.
1) 3 MV tandemron accelerator: 0.2 – 3.3 MV
 ▪ Good currents for alpha and light ion induced reactions
Detection
 ▪ Gamma-ray detection:
 ▪ Prompt
 ▪ From activation
 ▪ Large (120 cm diameter) new target chamber (+ several Si DSSSD detectors)
 ▪ Ultra-low background lab in salt mine

2) 9 MV pelletron + ROSPHERE + neutron dets
3 MV Tandetron™

Beam currents

860A Sputter Source

- 11B$^{3+}$ > 50 eμA
- 12C$^{3+}$ > 80 eμA
- 16O$^{3+}$ > 80 eμA
- 28Si$^{3+}$ > 70 eμA
- 31P$^{3+}$ > 70 eμA
- 58Ni$^{3+}$ > 20 eμA
- 63Cu$^{2+}$ > 20 eμA
- 75As$^{2+}$ > 10 eμA
- 197Au$^{2+}$ > 80 eμA

358 “Duoplasmatron” Source

- 1H$^+$ > 25 μA
- 4He$^+$ or 3He$^+$ > 3 μA

Na charge exchange canal

Activation and measurements in environments with ultralow background: (some) salt mines

Activation in nuclear laboratory (this is the 3 MV tandetron) → Measurement in salt mine Slanic Prahova (2.5 hrs from Bucharest - very low gamma-ray bkg)
Background spectra collected with a CANBERRA HPGe detector with 100% relative efficiency.

- Underground shielded: 2 cm Cu and 5 cm Pb
- Underground unshielded
- Ground unshielded

R. Margineanu, Krakow Epiphany Conference, 2010
• important reaction in nuclear astrophysics: $^{12}\text{C}+^{12}\text{C}$
• very difficult to measure, fluctuating due to resonances!

• No resonances observed in $^{13}\text{C}+^{12}\text{C}$! Obs: for most energies, the $^{12}\text{C}+^{12}\text{C}$ cross sections are suppressed!
• Only at resonant energies, the $^{12}\text{C}+^{12}\text{C}$ cross sections matches with those of $^{12}\text{C}+^{13}\text{C}$ and $^{13}\text{C}+^{13}\text{C}$!

• proposed tests of nucleus-nucleus models using $^{13}\text{C}+^{12}\text{C}$, measured in the Gamow window
Test react mech below barrier

• group
prof. X. Tang – IMP Lanzhou, China
The 13C+12C Experiment: prompt and activation

In beam irradiation, thick targets

12C(13C,p)24Na

24Na: $T_{1/2} = 15$ hr

$E_γ = 1369$, 2754 keV

13C$^{2+}$ beam

2-16 eμA

13C beam energy 4.6 – 11. MeV ($E_{cm} = 2.3 – 5.4$ MeV), in steps of 0.2 MeV

24Na (14.9590 hr) Decay Scheme
“microBq” Lab

Offline γ-ray technique

Lab: μBq
Depth: 208 m, 560 m w.e.

UNIREA Salt Mine

2 h drive

Bucharest

R. Margineanu et al., Applied Radiation and Isotopes 66,1501–1506, 2008

80,000 m2

W: 35 m x H: 60 m
Low level background counting

activation: 3.4 days measurements: 3.9 days
Thick target method

Cross sections were calculated starting from the experimental yield:

\[Y(E) = \int_{0}^{E} \sigma(E) \, dE \]

\[\sigma(E) = \frac{Y(E + \Delta E) - Y(E)}{n_t} \]
Test of Predictive Power
Test of Predictive Power

Submitted to PRL, Sept 2018
Summary C+C

- $^{12}\text{C} + ^{12}\text{C}$
 - Hindrance model based on systematics does not work
 - Upper and lower limits are proposed
 - New techniques needed
 - To be compared with THM measurements – *Nature*, May 2018

- Collaboration(s) leads to better science!
-51 thick targets of natural Ni were irradiated:

\[
\begin{align*}
^6\text{Ni}(26.22\%), & ^{61}\text{Ni}(1.14\%), ^{62}\text{Ni}(3.63\%), ^{64}\text{Ni}(0.93\%) \\
\end{align*}
\]

\[
\begin{align*}
^58\text{Ni} + \alpha & \rightarrow ^{62}\text{Zn} + \gamma & Q=3.364\text{MeV} & T_{1/2}=9.193\text{h} \\
& \quad \rightarrow ^{61}\text{Cu} + p & Q=-3.108\text{MeV} & T_{1/2}=3.333\text{h} \\
& \quad \rightarrow ^{54}\text{Fe} + 2\alpha & Q=-6.399\text{MeV} \\
& \quad \rightarrow ^{60}\text{Ni} + 2p & Q=-7.908\text{MeV} \\
& \quad \rightarrow ^{57}\text{Co} + p + \alpha & Q=-8.172\text{MeV} & T_{1/2}=271.74\text{d}
\end{align*}
\]

Offline measurements:
1. NAG Lab
2. microBq (Slanic-Prahova)

Talk by Dana Tudor
Activation measurements. Preliminary results

Experimental cross section for $^{64}\text{Zn}(\alpha, p)^{67}\text{Ga}$
Summary – work at home

Accelerator/infrastructure:
- New 3 MV tandetron - competitive for alpha and light ion induced reactions
- Ultra-low background lab in salt mine - excellent possibilities for gamma-ray detection from activation

Other topics:
- Exp: \((\alpha, n\gamma)\) and \((\alpha, \gamma)\) with ROSPHERE + neutron dets.
- Theory: OMP
- New workline: search for SN remnants with AMS (w. S. Bishop @ TUM)

NOTE: IFIN-HH is a TNA lab: PAC & support for outside groups (51% of beam time) available under ENSAR2;
Next PAC Oct. 26-27, 2018; deadline for submission Oct 15th
Indirect measurements - at outside facilities

• Coulomb and nuclear breakup, w RIBs
 – \(^9\)C case at RIBF, RIKEN – exp NP1412-
 SAMURAI29R1 – performed June 2018

• \(\beta\)-delayed proton decay @ Texas A&M
 University
 – New ASTROBOX2 detector – \(^{31}\)Cl \(\beta\)p-decay,
 (Oct. 2016), \(^{35}\)K (Oct. 2017), \(^{27}\)P (accepted for
 2019)

• ASTROBOX2E detector, to be completed
 for work in Europe
Breakup

Transfer or breakup vs proton capt in \(^{8}\text{B}\)

Model-independent shape w. ANC (Whittaker function)

Transfer happens here

Breakup happens here

\((p,\gamma)\) happens here

Details in talk by Alexandra Chilug
Inclusive and exclusive breakup of 9C in nuclear and Coulomb fields

Spokesperson: Livius Trache

Purpose: nuclear and Coulomb breakup of 9C: C & Pb targets

Results:

- Sec beam 9C ~50kpps, 83% pure
- new: Si-detector system-1024 ch. & electronics w. wide dynamic range (> 3000) – works!
- Identified protons in front Si, at $\Delta E \sim 300$ keV
- Identified main reaction channels: p+8B & 2p +7Be
- Full analysis under way.

Fig 1. Beam PID

Fig 2. PID in silicon strip detectors (SSD system) placed between target and FDC0. (up-right: proton signals in Si det)

Fig 3. PID in HODOs detectors (with gate on 9C beam)
Team

- **L. Trache**, A. Chilug, D. Tudor, I. Stefanescu, A. Spiridon, F. Carstoiu – *IFIN Bucharest*
- V. Panin, K. Yoneda, N. Togano, N. Aoi, S. Takeuchi, M. Kurokawa, H. Murakami, T. Motobayshi, ... – *RIKEN Nishina Center*
- Z. Halasz, Zs. Fulop, Z. Elekes, L. Stuhl, ... – *ATOMKI*
- LG Sobotka et al., *Wash Univ at St. Louis*
- S. Shimoura, E. Ideguchi, S. Go – *CNS, Univ Tokyo*
- K.I. Hahn,.. – *Ewha Womans University*
- **Jeff Blackmon, C. Rasco** – *Louisiana State University*
- A. Bonaccorso – *INFN Pisa*
- K. Ogata, ... – *RCNP Osaka*
Indirect methods. Beta-delayed proton decay measurements

4.1 Indirect Method: **Spectroscopy of resonances**

For radiative proton \((p,\gamma)\) reactions, use the inverse phenom:
\(p\)-decay of the same states populated by beta-decay

Proposed while at TAMU and studied with:

- very thin DSSD Si detectors
- A special gas detector ASTROBOX-1
- Cases: \(\beta p\)-decay of \(^{23}\text{Al},^{31}\text{Cl},^{35}\text{K}\) and \(^{27}\text{P}\)

4.2 Construction and measurements off-line and in-beam with the ASTROBOX 2 detector at Texas A&M University.

4.3 Construction of ASTROBOX2E in Magurele
Decay of ^{31}Cl

$3/2^+$

^{31}Cl

Γ_p

Γ_γ

S_P

Conditions:

$Q_{EC} > S_p + 2m_e c^2$

$J=1/2^+, 3/2^+, 5/2^+$

^{31}S

Resonant Capture

$^{30}\text{P}(p,\gamma)^{31}\text{S}$

Resonant contributions to reaction rate:

$\left\langle \sigma v \right\rangle_{re}$

Lower proton energies most important, but very difficult:

- lower branching
- increased exp difficulties (det windows, background, etc...)

Need energy, J_r and resonance strength
Decay spectroscopy
Beta- and beta-delayed proton-decay

Explosive H-burning in novae
&
IAS in $T_z=-3/2$ nuclei
Isospin mixing
GT strength distribution

^{22}Na depletion in novae
$^{23}\text{Al}\rightarrow^{23}\text{Mg}^* \Rightarrow ^{22}\text{Na}(p,\gamma)^{23}\text{Mg}^*$
& $^{22}\text{Mg}(p,\gamma)^{23}\text{Al}$

See Jordi’s list!
Experimental setup – thin Si detectors

MARS implantation station

Energy degrader

thermocooler

connectors

`E = E_p + kE_{recoil} + \langle \Delta E_\beta \rangle`

- **p-detector** – very thin DS Si strip 65 or 45 µm
 - W1-65 BB2-45

- **β-detector** – thick Si det 1 mm

- **γ-detector** – HPGGe 70% effic

M. McCleskey, LT et al, NIM A700, 124 (2013)
Comparison Si – gas detector

FIG. 7: (Color online) Full collected statistics for the 22Al data (black, solid) and the 22Mg data (blue, dashed). The energy is the total measured decay energy. Smoothed 22Mg spectrum, scaled to match the 22Al spectrum at 150 keV is shown with red dots and corresponding uncertainties. Upper panel shows only the low energy part where the proton group at ~ 270 keV is clearly visible on top of the β background, whereas the lower panel shows the total spectra.

A. Saastamoinen, LT et al, PRC 83 (2011)
E. Pollacco, LT et al., NIM 2014

L. Trache - Natal 2015
Design and construction of the micromegas detector for AstroBox2. Measurements, data and nuclear structure calculations

Chamber: design and prod: TAMU
Micromegas: Bucharest, Saclay, CERN
Electronics: Bucharest
Gas (P10) handling: existing at TAMU
Assembly and source tests: Saclay + TAMU
In-beam test and use: Bucharest, Saclay, TAMU
^{31}Cl βp decay - AB2 exp Oct 2016
Some theory: Optical Model Potentials for nucleus-nucleus collisions

OMP for nucleus-nucleus collisions

Collaboration with F. Carstoiu – our interest (and his hobby!) on description of elastic scattering data and potentials to be used in the description of indirect measurements for nuclear astrophysics using RIB

- 4 papers published on p-transfer experiments used for NA – ANC method for $^{17}\text{F}(p,\gamma)^{18}\text{Ne}$ and elastic scattering of ^{17}O and ^{18}O at 12 MeV/nucleon

- 3 papers published to Rom. J. Phys.; I will not address here the details
NA events by IFIN-HH in 2018

Events organized by us (in collaboration or single):

a) COST training school CA 16117 ChETEC “An experiment of Nuclear Physics for Astrophysics using direct methods”, Bucharest-Magurele, Apr. 10-20, 2018

b) Carpathian Summer School of Physics 2018 (CSSP18), “Exotic Nuclei and Nuclear/Particle Astrophysics (VIII)”, Sinaia, Romania, July 8 – 21, 2018: 92 participants

c) ECT* workshop “Indirect methods in Nuclear Astrophysics”, Trento, Italy, Nov 5-9 , 2018
(w. C. Bertulani, A. Bonaccorso, T. Motobayashi and Zs. Fulop)
ChETEC training school: "An experiment of Nuclear Physics for Astrophysics using direct methods“

L. Trache and Mihai Straticiuc – in charge

Activities

From 10th to 21st of April 2018, consisting in classes and hands-on activities @ IFIN-HH, Magurele:

1. In a target laboratory.
2. Performing an experiment at the 3MV Tandetron™ (7 days around the clock, PAC approved in Oct. 2017).
3. Gamma-ray measurements at the 9 MV tandem and the ROSPHERE array.
4. De-activation measurements in a low background underground laboratory "microBequerel" in the Slanic-Prahova salt mine.

http://chetec-school.nipne.ro
http://www.chetec.eu/

“Trainers”:

• Prof. Marialuisa Aliotta (Univ. of Edinburgh) – Introduction to Nuclear Astrophysics
• Dr. Gyorgy Gyurky (ATOMKI Debrecen, TBC) – Experimental methods in NA: direct measurements
• Prof. Silvia Leoni (Univ. of Milano) – Gamma-ray spectroscopy in NA
• Dr. Romulus Margineanu (IFIN-HH)
• Dr. Raluca Marginean (IFIN-HH)
• Dr. Mihai Straticiuc (IFIN-HH)

mihai.straticiuc@nipne.ro
livius.trache@nipne.ro
Carpathian Summer School of Physics, Sinaia, July 1-14, 2018

Two weeks of good science!!!
Acknowledgements

• Collaborators:
 - NAG in Bucharest
 • Florin Carstoiu – theory collaborator
 • Alexandra Spiridon
 • Alexandra Chilug
 • Dana Tudor
 • Ionut Stefanescu
 • Iuliana Stanciu – now in PhD program at TU Muenchen
 • Madalina Radvar – now in master program at Uni Koeln/Bonn
 - MARS group at Texas A&M
 - RIKEN collaborators
 – AB2 collaborators: Lolly Pollacco (CEA/IRFU Saclay), Ruiz de Oliveira (CERN, G. Pascovici (IFIN-HH)

• Grants from Romanian Ministry of Research and Innovation: PN16420102, PN III NUCASTRO, NUCASTRO2 and NAIRIB

• COST Action CA16117 ChETEC - for support for the participation at this workshop

Thank you for your attention!