The ^{26}Al yields in single stars

Ertao Li
Shenzhen University, Shenzhen, China
Konkoly Observatory, Budapest, Hungary
14th Sep. 2018
RADIOSTAR: (PI Maria Lugaro)

For more info you can find here: http://konkoly.hu/radiostar/index.html
Outline

• Motivations;
• 26Al yields in single stars;
• The influence of 26Al isomeric state;
• Conclusions.
26Al in meteorites & the Galaxy

- A direct proof of the ongoing nucleosynthesis in our galaxy
- The total amount of live 26Al is 2.0 ± 0.3 solar mass
- The source of 26Al favor massive star

- Give more information about the birth of the Solar System.
- The decay of 26Al in the ESS could have important consequences to our earth.

M. Lugaro, et al., 2018 PPNP 102, 1.
Possible 26Al sources

- Hydrostatic H-burning
- Explosive H-burning
- Hydrostatic Ne/C-burning
- Explosive Ne/C-burning
- Spallation of cosmic rays
- Single stars
- Binary stars

N. Prantzos et al., 1996, PR, 267, 1
C. Iliadis et al., 2011 APJ 193, 16.
M. Lugaro, et al., 2018 PPNP 102, 1.

The 26Al sources are still debating……
The one-dimensional open source code: MESA is used to do the calculations http://mesa.sourceforge.net/ (64 isotopes + 557 reactions, Z = 0.014)

- The more initial stellar mass the more 26Al production in stars.
- Above $30M_\odot$: the yields in winds agree with Limogi’s, even if the metallicities are different (Limogi’s: $Z = 0.02$)
- At $10M_\odot$ & $20M_\odot$: the yields are bigger than Limogi’s.
- At $5M_\odot$: the yields enhanced a lot?

M. Limongi et al., 2006, APJ 647,483
The ^{26}Al in the outer convection mixing is bigger at $5M_{\odot}$;

- Dredge up appear at $5M_{\odot}$, no dredge up at $10M_{\odot}$;
- The dredge up mixing increase the yields in winds.
Reaction flux to determine the important reactions

For the reaction $N_i(A_i Z_i) + N_j(A_j Z_j) \leftrightarrow N_k(A_k Z_k) + N_l(A_l Z_l)$, its reaction net flux of nucleus i is calculated by the following formula:

$$
\int_{t_1}^{t_2} \int_0^M \dot{X}_{mti} dmdt = \int_{t_1}^{t_2} \int_0^M (-\dot{X}_{mt(i\to k)} + \dot{X}_{mt(k\to i)}) dmdt
$$

$$
= \int_{t_1}^{t_2} \int_0^M N_i \left(-\frac{X_{mti}^N_i X_{mtj}^N_j}{A_i^{N_i - 1} A_j^{N_j} N_i! N_j!} [ij]_{mtk} + \frac{X_{mtl}^N_l X_{mtk}^N_k A_i}{A_l^{N_l} A_k^{N_k} N_l! N_k!} [lk]_{mti} \right) dmdt.
$$

where \dot{X}_{mti} is the mass fraction rate of nucleus i from this nuclear reaction in cell m at time of t, N_i is its number contained in this reaction, $[ij]_k = (\rho_b N_A)^{N_i + N_j - 1} \langle ij \rangle$, ρ_b is the baryon density and $\langle ij \rangle$ represents the reaction rate between i and j. In case of decay, N_j and N_l will be zero. The reaction forward mass flow is $\dot{X}_{ml(i\to k)} = N_i \frac{X_{mti}^N_i X_{mtj}^N_j}{A_i^{N_i - 1} A_j^{N_j} N_i! N_j!} [ij]_{mtk}$ which decreases the abundance of nucleus i. $\dot{X}_{ml(k\to i)} = N_i \frac{X_{mtl}^N_l X_{mtk}^N_k A_i}{A_l^{N_l} A_k^{N_k} N_l! N_k!} [lk]_{mti}$ is the reaction backward mass flow which increases the abundance of nucleus i.
The reaction sensitivity to the yields of 26Al are still going on.
The influence of 26Al isomeric state

4 states
11 states

Weisskopf approximation
The influence of 26Al isomeric state

- The new γ - decay rates between the ground and isomeric states of 26Al increase the 26Al yields (in wind), 4% at 5M$_{\odot}$ and 60% at 50M$_{\odot}$.
- The effects at other stellar masses are still calculating.
Conclusions

- The 26Al sources are still debating;
- In single stars, the more stellar mass the more 26Al production;
- The 26Al yields in winds agree with other works at above $30M_\odot$; at $10M_\odot$ and $20M_\odot$ our results are higher;
- The dredge up mixing at $5M_\odot$ enhance 26Al yields in winds;
- For the future sensitivity test the reaction flux is used to decide which reaction is more important;
- The new γ - decay rates between the 26Al ground and isomeric states increase the 26Al yields.
谢谢
Köszönöm
Thank you for your attention