Breakup of proton-rich nuclei at SAMURAI for investigation of astrophysical reaction rates in explosive hydrogen burning.

V. Panin1,2, Z. Elekes3, B. C. Rasco4, L. Trache5, K. Yoneda2

and HI-p SAMURAI collaboration

1CEA-Irfu, Saclay, France
2RIKEN Nishina Center, Wako, Japan
3ATOMKI, Debrecen, Hungary
4JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
5IFIN-HH, Bucharest-Magurele, Romania

Availability of energetic secondary beams of proton-rich nuclei at RI Beam Factory in RIKEN opens an access to experimental studies of specific proton-capture reactions occurring during explosive hydrogen burning at extreme temperature and density conditions in stellar environment. The newly developed experimental setup utilizing SAMURAI spectrometer [1] is most suitable for such studies due to a possibility of performing large-acceptance and full-kinematics measurements of the reaction products stemming from breakup in Coulomb and nuclear fields. One of the primary focuses of the experimental program at SAMURAI is investigation of proton-capture rates in the vicinity of waiting-point nuclei of rp-process and their implications for the type I X-ray bursts. Due to the usage of high-precision silicon trackers coupled with wide-dynamic-range preamplifiers, heavy fragments up to $Z=50$ and protons can be identified and tracked simultaneously event-by-event. The obtained experimental information will allow us to characterize the corresponding time-reversal proton-capture reactions as well as to pin down the reactions with the most significant impact on the rp-process and XRB observables. Details of the experimental method, instruments and preliminary results of the benchmark experiments will be discussed in this presentation.