Modeling of the nucleosynthesis processes

Mass measurements of neutron-rich gallium isotopes and the production of the first r-process abundance peak elements


1 Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
2 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
3 National Superconducting Cyclotron Laboratory, Michigan State University, 640 South Shaw Lane, East Lansing, Michigan 48824, USA
4 Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
5 TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
6 Joint Institute for Nuclear Astrophysics, Center for the Evolution of the Elements
7 Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824, USA
8 Ruprecht-Karls-Universität Heidelberg, D-69117 Heidelberg, Germany
9 Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
10 Department of Physics, University of York, York, YO10 5DD, United Kingdom
11 Max-Planck-Institut für Kernphysik, Heidelberg D-69117, Germany
12 Department of Physics & Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
13 Department of Physics, Colorado School of Mines, Golden, Colorado, 80401, USA
14 CCS-2, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
15 Center for Theoretical Astrophysics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
16 Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

The r-process is responsible for the production of about half of the heavy elements observed in the solar abundances. The site of the r-process was unknown until recent observations. The gravitational wave event GW170817, which was identified as a binary Neutron Star Merger (NSM), was followed by the detection of fast fading optical counterpart that is consistent with predictions for a kilonova/macronova, associated with r-process nucleosynthesis [1,2]. In particular the observation of a bright, fast fading UV component, established the production of heavy element in the aftermath of the neutron star merger.

Since the complicated atomic structure of lanthanides implies high opacity ejecta which would shift the wavelength of the observed light to the red, the blue color of the ejecta indicates the presence of material with relatively high electron fractions and consequently low lanthanide production[3,4,5]. Recent mass measurements of neutron rich gallium masses affect the production of elements of the first r-process peak. We present a study of nucleosynthesis for conditions of high $Y_e$ outflows from NSMs and investigate the effect of the recently measured
Ga masses and the conditions under which this could be the site for the production of the elements of the r-process abundance pattern for A < 100.