The 26Al yields in single stars

E. T. Li1, M. Lugaro2, H. E. Brinkman2, C. L. Doherty2, B. Côté2

1 College of Physics & Energy, Shenzhen University, 518060, Shenzhen, China
2 Konkoly Observatory, Hungarian Academy of Sciences, H-1121, Budapest, Hungary
3 Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Australia

The ground state of the unstable 26Al nucleus (26Al$_g$) with $t_{1/2} = 0.717$ Myr was the first radioisotope detected in the galaxy, via the characteristic 1.809 MeV γ-emission of 26Mg [1]. The observation is direct proof of ongoing stellar nucleosynthesis in our Galaxy and indicates that there are approximately $2-3$ M$_\odot$ of 26Al$_g$ [2]. It is therefore fundamental to understand the yields of 26Al$_g$. 26Al has an isomeric state (26Al$_m$) which is prohibited to decay into 26Al$_g$ due to the large spin difference. However, an equilibration between 26Al$_m$ and 26Al$_g$ could proceed via intermediate states and influence the abundance of 26Al$_g$ [3]. To clarify the production mechanism of 26Al$_g$, we present our investigation of the sensitivity of the yields to variation of nuclear reaction rates involving 26Al$_g$ and 26Al$_m$ in single stars.