Recent advances on understanding the s-process

Borbála Cseh1, Maria Lugaro1,2, Valentina D’Orazi3, Denise B. de Castro4, Claudio B. Pereira5, Amanda I. Karakas2, László Molnár1, Emese Plachy1, Róbert Szabó1, Marco Pignatari6,1,7, Sergio Cristallo8,9

1 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege M. út 15-17, Hungary
2 Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800, Australia
3 INAF Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy
4 Department for Astrophysics, Nicolaus Copernicus Astronomical Centre of the Polish Academy of Sciences, 00-716 Warsaw, Poland
5 Observatorio Nacional, Rua General José Cristino, 77 Sao Cristovao, Rio de Janeiro, Brazil
6 E. A. Milne Centre for Astrophysics, Department of Physics & Mathematics, University of Hull, HU6 7RX, United Kingdom
7 The NuGrid Collaboration, http://www.nugridstars.org
8 INAF, Osservatorio Astronomico d’Abruzzo, I-64100 Teramo, Italy
9 INFN-Sezione di Perugia, I-06123 Perugia, Italy

The understanding of the s-process is a key to explain the contribution of the r-process elements to the abundance pattern of the stars. One of the production sites of s-process elements is in the interior of thermally pulsating AGB stars. Barium stars belong to a binary system where the companion star has evolved through the AGB phase and transferred elements heavier than Fe produced by the slow neutron capture process onto the secondary star, which is now observed as a Ba star. Comparison of the derived s-process abundances from the largest set of homogeneous high resolution spectra of Ba stars and different non-rotating AGB models with 13C as the main neutron source show the same trend: increase of the hs-type/ls-type element ratio (for example, [Ce/Y]) with decreasing metallicity. Although the models are in agreement with the observational data, further improvement on neutron capture cross sections are necessary to be able to make a more accurate comparison and to have a better understanding on the abundance pattern of each star.