Investigation of radiative proton-capture reactions using high-resolution γ-ray spectroscopy

P. Scholz1, F. Heim1, J. Mayer1, M. Müller1, M. Körschgen1, J. Wilhelmy1, and A. Zilges1

1 Institute for Nuclear Physics, University of Cologne, Cologne, Germany

Reaction cross sections are one of the main nuclear physics ingredients for nucleosynthesis processes in stellar environments. For isotopes heavier than iron, cross sections are often calculated using the Hauser-Feshbach statistical model. The accuracy of these calculations strongly depends on the uncertainties of three nuclear physics input-parameters: nuclear level densities, γ-strength functions, and particle+nucleus optical-model potentials.

Precision measurements of cross sections and systematic investigations help to improve these models. This talk will present recent radiative proton-capture experiments performed at the Cologne 10 MV FN-Tandem accelerator and the high-efficiency γ-ray spectrometer HORUS [1]. Besides total and partial cross sections, a method will be presented which allows the determination of primary γ-ray intensities via the technique of two-step γ-ray cascades [2]. Moreover, it will be shown how information on the γ-strength in the reaction product can be extracted in a model-independent way via the ratios of primary γ-rays.

Supported by the DFG (ZI 510/8-1) and the ULDETIS project within the UoC Excellence Initiative institutional strategy. JW is supported by the Bonn-Cologne Graduate School of Physics and Astronomy.