Production of multiply charged fullerene and carbon cluster beams by a 14.5 GHz ECR ion source

S. Biri, A. Valek, L. Kenéz
Inst. of Nuclear Research (ATOMKI), Debrecen, Hungary

A. Jánossy
Technical University, Budapest, Hungary

A. Kitagawa
Nat. Inst. Rad. Sci. (NIRS), Chiba, Japan
Summary

I. Introduction (the goal of the research)

II. Experimental setup
 • The ECR ion source
 • The fullerene oven
 • Tuning of the ECRIS

III. Production of C_n ion beams
 • Multiply charged fullerene beams
 • Carbon cluster beams

IV. Formation of NC_n and $N@C_{60}$
 • NC_n beams
 • $N@C_{60}$ beams
 • $N@C_{60}$ solids

V. Conclusion, plans
The goal of the research

- Endohedral fullerenes ($X@C_{60}$) generally
- if $N@C_{60}$: N always in the center
- N weakly interacting with cage
- electron-spin-resonance (ESR) lines are narrow

The N atom is the most attractive probe to **measure/monitor**

- molecular distortions
- molecular motions (incl. in living tissues)
- internal fields
- exohedral chemical addition reactions
Traditional methods to produce N@C$_{60}$

By ion bombardment of C$_{60}$ on a **surface**

or

In electrical arc discharge tube (surface & **volume**)

- low concentration of N@C$_{60}$
- this should be increased
- production mechanism?
Production of $X@C_{60}$ ions in the ECRIS plasma

In the ECRIS trap:
- high confinement times
- ionization & excitation
- evaporation solved
- cooled surfaces exist
- extraction?
- beam?
The ATOMKI-ECRIS

- 14.5 GHz/2 kW
- Axial field: 1.2/0.4/1.0 T
- Radial field: 0.95 T
- Sextupole: Halbach-24
- Chamber: φ58x200
- Extraction: upto 30 KV (typical 10 KV)
- Gases: He, N, O, Ar, Kr, Xe (medium charges & currents)
- Solids (MIVOC & oven): C, C_n, C_{60}, Fe, Ni, Zn, Pb
The beamline system

14.5 GHz ATOMKI ECRIS
Modifications on the ECRIS

1. Low RF power (~1 W)
2. Iron plug removed
3. Biased disc removed
4. Al tubes (cooled collectors)
5. Extraction voltage max. 700 V (typical 10 KV)
The Fullerene Oven

1. Thermocouple
2, 3. Electrical connections & mechanical holders
4. Kanthal heater
5. Shielding
6. Crucible (SS)
7. BN insulator

- **Temp:** < 1000 C
- **Movement:** 50 mm axial
The tuning of the ECRIS

- “Unusual”
- 100…200 mg of 99.5% C\textsubscript{60} powder
- degassing, dehydration...
- Temperature: 400…600 C; typical: 450 C
- 1 mbar local fullerene pressure
- microwave power < 1W (optimum exists)
- oven position is critical
- gas flow effects on X@C\textsubscript{60} rate
Multiply charged fullerene beams

- Mostly C_{60}^+ and C_{60}^{++}
- N_2^+ and H_2O^+

Highest intensities:
- C_{60}^+ : 410 nA (700 V)
- C_{60}^{++} : 245 nA (1300 V)
- C_{60}^{+++}: 105 nA (1900 V)
- C_{60}^{4+} and C_{60}^{5+} observed
The fine structure of the fullerene spectrum

- 3 main parts
- C_{58}^+, C_{56}^+, …, C_{32}^+
- $n=30...60$: only even mass numbers
- C_{60}^+: by electron impact ionization, then successive loss of C_2 molecules?
- C^+ and C_2^+ surprisingly low
Optimization for 1+, 2+, 3+
Carbon cluster beams

- Tuned for C_{11}^+
- $n=2\ldots15$: odd & even
- $U=1900$ V

- 10…100 nA cluster beams
- single and double charged
- the 4n+3 “magic” rule
Formation of NC\textsubscript{n} beams

- As the N flow increases, *new peaks* appear
- by mass: NC\textsubscript{n} (N=46…58, even)
- they are *most probably* N@C\textsubscript{n} beams

- Upper curve: \(p=9.5\times10^{-7} \) mbar
- Middle curve: \(p=2.7\times10^{-6} \) mbar
- Lower curve: \(p=5.2\times10^{-6} \) mbar

Slit: 2 mm
N@C_{60} beams

- Pure mass resolution of the bending magnet
- “ugly” spectrums
- but still clearly shows the existence of the 734=60*12+14 mass molecule
- N@C_{60} found in the beam!

C_{60} (720), NC_{59} (722), N@C_{60} (734), C_{62} (744), NC_{61} (746)
N@C$_{60}$ solids

- About 10 evaporated Al tubes were analysed
- time of evaporation: from 2-3 hours till 2 days
- ~ 80% of the evaporated material gained back
- thick black layer of C, C$_{60}$, clusters, N@C$_{60}$
- chemical treatment
- checking by electron-spin-resonance (ESR)
- **best sample**: 2 times higher N@C$_{60}$ concentration than with other methods
Conclusion

- High intensity single and multicharged fullerene (C_{60}) beams were produced by a 14.5 GHz ECRIS
- Large carbon cluster ion beams were also obtained
- The operation mode for the production of N-capsulated fullerene ions was found.
- The deposited macroscopic concentration was 2 times higher than with other methods.
Future plans

• higher concentration of N@C$_{60}$
• direct connections between the plasma (beam) parameters and the ESR results.
• information on the encapsulation process.
• other types of endohedral fullerene beams